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What is Dryad?
n General-purpose DAG execution engine project launched 

circa 2005
n Cited as inspiration for e.g. Hyracks, Tez

n Engine behind Microsoft Cosmos/SCOPE
n Initially for MSN Search/Bing, later used throughout MSFT

n Core of research batch cluster environment ca 2009
n DryadLINQ, Quincy scheduler, TidyFS

n In Nov 2011, Microsoft dropped plans to 
productize/commercialize Dryad to focus on Hadoop
instead:

n http://www.zdnet.com/article/microsoft-drops-dryad-puts-its-big-data-bets-on-hadoop/

n Dryad & DryadLINQ on YARN have been open-sourced 
under the Apache 2.0 licensed on GitHub:

http://research.microsoft.com/en-
us/um/siliconvalley/projects/BigDataDev/

http://research.microsoft.com/en-us/um/siliconvalley/projects/BigDataDev/


Dryad & Tez 4

Goals of the Dryad Project
n General-purpose execution environment for 

distributed, data-parallel applications
n Concentrates on throughput not latency
n Assumes private data center (=> security???)

n Automatic management of scheduling, distribution, 
fault tolerance, etc.
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Outline
n Motivation - what’s wrong with MapReduce ?
n What is Dryad ?
n What is DryadLINQ ?
n What is Tez ?
n Why is dataflow so useful?

n An engineering sweet spot
n Beyond Stateless DAG Dataflow
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What’s wrong with MapReduce?
n Literally Map then Reduce and that’s it…

n Reducers write to replicated storage
n Complex jobs pipeline multiple stages

n No fault tolerance between stages
n Map assumes its data is always available: simple!

n Output of Reduce: 2 network copies, write 3 disks 
n In Dryad this collapses inside a single process
n Big jobs can be more efficient with Dryad
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What’s wrong with Map+Reduce?
n Join combines inputs of different types
n “Split” produces outputs of different types

n Parse a document, output text and references
n Can be done with Map+Reduce

n Ugly to program
n Hard to avoid performance penalty
n Some merge joins very expensive

n Need to materialize entire cross product to disk
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How about Map+Reduce+Join+…?
n “Uniform” stages aren’t really uniform
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How about Map+Reduce+Join+…?
n “Uniform” stages aren’t really uniform
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Graph complexity composes
n Non-trees common
n E.g. data-dependent re-partitioning

n Combine this with merge trees etc.

Distribute to equal-sized ranges

Sample to estimate histogram

Randomly partitioned inputs
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Main Idea of Dryad
n Represent the computation as a Directed Acyclic 

Graph (DAG) of communicating sequential 
processes
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A Dryad Job = Directed Acyclic Graph

Processing
vertices Channels

(Temp file, 
TCP pipe,
Shared
FIFO 
memory)

Inputs

Outputs
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Support Multiple ways of Communications 
(b/w Vertices of the Computation Graph)



Dryad & Tez 14

The DAG Computational model
n Vertices are independent

n State and scheduling**

n Dataflow very powerful
n Explicit batching and communication

Processing
vertices Channels

Inputs

Outputs

**Not so Straightforward for Channels realized
by TCP Pipe or Shared Memory FIFO !
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Constructing the Job
n Use graph operators implemented as a  C++ library to 

describe the graph:
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Example: a Dryad Job for Database Query
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Dryad Key Features
n Dataflow graph is mutable at runtime

n Repartition to avoid skew
n Specialize matrices dense/sparse
n Harden fault-tolerance

n Support general-purpose refinement rules for 
Optimization
n Processes formed from subgraphs
n Re-arrange computations, change I/O type

n Application code not modified !
n System at liberty to make optimization choices

n High-level front ends hide this from user
n SQL query planner, etc.
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Run-time Graph Refinement



Dryad & Tez 19

Run-time Graph Refinement (cont’d)
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What Dryad does ?
n Abstracts cluster resources

n Set of computers, network topology, etc.
n Recovers from transient failures

n Rerun computations on machine or network fault
n Speculate duplicates for slow computations

n Schedules a local DAG of work at each vertex
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Dryad System Architecture

n Job Manager (JM)
n Centralized coordinating process
n User application to construct graph
n Linked with Dryad libraries for scheduling vertices

n Vertex executable
n Dryad libraries to communicate with JM
n User application sees channels in/out
n Arbitrary application code, can use local Filesystem

V V V
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Dryad System Architecture (cont’d)

n Services
n Name server enumerates all resources
n Including location relative to other resources
n Daemon running on each machine for vertex dispatch
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Execution
n Job manager not currently fault tolerant
n Vertices may be scheduled multiple times

n Each execution versioned
n Execution record kept- including versions of 

incoming vertices
n Outputs are uniquely named (versioned)
n Final outputs selected if job completes
n Non-file channel communication  may cascade 

failures
n Vertices specify hard constraints or 

preferences (Hints) for placement
n Scheduling is greedy assuming only one job
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Scheduler state machine
n Scheduling is independent of semantics

n Vertex can run anywhere once all its inputs are 
ready

n Fault tolerance
n If A fails, run it again
n If A’s inputs are gone, run upstream vertices again 

(recursively)
n If A is slow, run another copy elsewhere and use 

output from whichever finishes first
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Scheduling and fault tolerance

n DAG makes things easy
n Schedule from source to sink in any order as long 

as inputs to a vertex is ready
n Re-execute subgraph on failure
n Execute “duplicates” for slow vertices
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Resources are virtualized
n Each graph vertex is a process

n Write outputs to disk (usually, but not always !)
n Read inputs from upstream nodes’ output files

n Graph generally larger than cluster RAM
n 1TB partitioned input, 250MB part size, 4000 parts

n Cluster is shared
n Don’t size program for exact cluster
n Use whatever share of resources are available
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Example: SkyServer DB Query
n 3-way join to find gravitational lens effect
n Table U: (objId, color) 11.8GB
n Table N: (objId, neighborId) 41.8GB
n Find neighboring stars with similar colors:

n Join U+N to find
T = U.color,N.neighborId where U.objId = N.objId

n Join U+T to find
U.objId where U.objId = T.neighborID

and U.color ≈ T.color
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SkyServer DB query
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D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

U U

n Took SQL plan
n Manually coded in Dryad
n Manually partitioned data

SkyServer DB query

u: objid, color

n: objid, neighborobjid

[partition by objid]

select

u.color,n.neighborobjid

from u join n

where

u.objid = n.objid

(u.color,n.neighborobjid)

[re-partition by 
n.neighborobjid]

[order by n.neighborobjid]

[distinct]

[merge outputs]

select

u.objid

from u join <temp>

where

u.objid = 
<temp>.neighborobjid and

|u.color - <temp>.color| < d
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Recap: Automatic Optimizing
Dryad applications

n General-purpose refinement rules
n DAG mutation during run-time !
n Processes formed from subgraphs

n Re-arrange computations, change I/O type
n Application code not modified

n System at liberty to make optimization choices
n High-level front ends hide this from user

n SQL query planner, etc.
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Optimization
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Performance Results 

n SQL Query
n 10 Machines

n 2 dualcore 2 GHz 
n 8 GB Mem
n 1 Gb Ethernet
n 4x400GB disks
n Winows Server 2003
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Another Example: Query histogram 
computation

n Input: log file (n partitions)
n Extract queries from log partitions
n Re-partition by hash of query (k buckets)
n Compute histogram within each bucket
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Naïve histogram topology
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Efficient histogram topology
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P parse lines D hash distribute
S quicksort MS merge sort
C count occurrences M non-deterministic merge
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P parse lines D hash distribute
S quicksort MS merge sort
C count occurrences M non-deterministic merge
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Final histogram refinement

Q' Q'

RR 450

TT 217

450

10,405

99,713

33.4 GB

118 GB

154 GB

10.2 TB

1,800 computers
43,171 vertices

11,072 processes
11.5 minutes
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How does Dryad fit in?

n Target Users/Developers of the “Raw” Dryad 
middleware:
n Experienced C++ developer
n Can write good single-threaded code
n Wants generality, can tune performance

n Higher-level front ends for broader audience:
n Many programs can be represented as a distributed 

execution graph
n The programmer may not have to know this

n “SQL-like” queries: LINQ
n High-level queries compiled into DAGs automatically and Dryad 

will run them for you
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The Dryad Ecosystem

n Well-tested at scales up to 15k cluster computers
n In heavy (Microsoft in-house) production use for 8 years
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Integrated system
n Collection-oriented programming model (LINQ)
n Partitioned file system (TidyFS)

n Manages replication and distribution of large data
n Cluster scheduler (Quincy)

n Jointly schedule multiple jobs at a time
n Fine-grain multiplexing between jobs
n Balance locality and fairness

n Monitoring and debugging (Artemis)
n Within job and across jobs
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Dryad vs. DryadLINQ
n Dryad provides a low-level parallel data flow 

processing interface
n Acyclic data flow graphs
n Data communication methods include pipes, file-based, 

message, shared-memory 

n DryadLINQ
n A high level language for app developers
n It hides the data flow details
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LINQ and DryadLINQ
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???

Dryad

Cluster

Shell script

Shell

Machine
≈

Dryad = Execution Engine
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n Nebula – limited to existing binaries

n Scope – SQL-ish, not general purpose 

n Is it possible to do better? 
n Can one get the general purpose-ness of C#/Java 

and conciseness of SQL? 
n And at the same time, be efficient too?

Prior High-level Query Language over Dryad
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Language Integrated Query (LINQ)
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Language Integrated Query (LINQ)
n Microsoft’s Language INtegrated Query (LINQ) is an 

extension of .Net which allows one to write declarative 
computations (i.e. SQL-like) on collections of objects !!
n Available in Visual Studio 2008

n Basic abstraction – collections
“All the world’s a collection, And all the men and women merely iterate on 

collections” - implied by Shakespeare

n A set of operators to manipulate datasets in .NET
n Support traditional relational operators
n Select, Join, GroupBy, Aggregate, etc.

n Data model
n Data elements are strongly typed .NET objects
n Much more expressive than SQL tables

n Extensible
n Add new custom operators
n Add new execution providers
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Collections, Iterators and LINQ

IEnumerable <T>

+
LINQ

=>

IEnumerable <T>

=>

import system.linq;
var result = from num in numbers

where num
% 2 == 0

orderby
num

select
num;

List<int> result = new List<int>();
foreach (int num in numbers) {

if (num % 2 == 0)
result.Add(num); 

}
result.sort();
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Syntactical sweetness of LINQ

var result = from num in numbers
where num % 2 

== 0
orderby num
select num;

var result = 
numbers.Where(num => num % 2 == 0)

.OrderBy(n => n);

Query Style

Method Style
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LINQ Functionality

n Select / SelectMany

n Where
n GroupBy

n OrderBy

n Join

n Union / Intersect / 
Except

n …

Map (1-to-1 / 1-to-many)

Filter

Reduce

Sort

Join

Set operations
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LINQ Providers

SQL
XML

…
Google
Wikipedia
Twitter

n Select / SelectMany
n Where
n GroupBy

n OrderBy
n Join

n Union / Intersect / 
Except

n …
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LINQ System Architecture

.Net
Program

LINQ
Provider
Interface

Query

Objects

LINQ-to-SQL

LINQ-to-XML

PLINQ

DryadLINQ
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Parallel Collections

Partition

Collection

Simplest example: GFS/HDFS file
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Dryad + LINQ = DryadLINQ

string uri = @"file://\\machine\directory\input.pt";
PartitionedTable<LineRecord> input =

PartitionedTable.Get<LineRecord>(uri);

var lengths = input.Select(line => line.ToString().Length);
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LINQ

Collection<T> collection;
bool IsLegal(Key);
string Hash(Key);

var results = from c in collection 
where IsLegal(c.key) 
select new { Hash(c.key), c.value};
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Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection 
where IsLegal(c.key) 
select new { Hash(c.key), c.value};

DryadLINQ = LINQ + Dryad

C#

collection

results

C# C# C#

Vertex
code

Query
plan
(Dryad job)Data
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DryadLINQ
n LINQ: Relational queries integrated in C#
n More general than distributed SQL

n Inherits flexible C# type system and libraries
n Data-clustering, EM, inference, …

n Uniform data-parallel programming model
n From SMP to clusters
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Word Count with DryadLINQ
string uri = @"file://\\machine\directory\input.pt";
PartitionedTable<LineRecord> input =

PartitionedTable.Get<LineRecord>(uri);

string separator = ",";
var words = input.SelectMany(x => SplitLineRecord(separator));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));

var ordered = counts.OrderByDescending(x => x[2]);

var top = ordered.Take(k);

top.ToDryadPartitionedTable("matching.pt");
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DryadLINQ Word Count àDryad
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DryadLINQ Code Generation

string uri = @"file://\\machine\directory\input.pt";
PartitionedTable<LineRecord> input =

PartitionedTable.Get<LineRecord>(uri);

string separator = ",";
var words = input.SelectMany(x => SplitLineRecord(separator));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));

var ordered = counts.OrderByDescending(x => x.count);

var top = ordered.Take(k);

top.ToDryadPartitionedTable("matching.pt");

Conversion of subexpressions to 
code for Dryad vertices…
1.Local variables
2.Local libraries and functions
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DryadLINQ Architecture

DryadLIN
Q

Client machine

Distributed
Query Plan.Net

Programs

Query Expr

Cluster

Output Tables

Input 
Tables

Query

Dryad 
Execution

Dryad 
JM

Vertex
code

Con-
text
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DryadLINQ Architecture (cont’d)

DryadLIN
Q

Client machine

(11)

Distributed
Query Plan.Net

Programs

Query Expr

Cluster

Output TablesResults

Input 
TablesInvoke Query

Output 
Partitioned-

Table

Dryad 
Execution

.Net Objects

Dryad 
JM

Vertex
code

Con-
text
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Combining with LINQ-to-SQL

70

DryadLINQ

Subquery Subquery Subquery Subquery Subquery

Query

LINQ-to-SQL LINQ-to-SQL
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DryadLINQ Optimizations
n Some are similar to existing DB optimizations

n Eliminate redundant partitioning steps
n Aggregation steps moved up the graph, before 

partitioning steps

n Existing Dryad optimizations as well
n Dynamic reconfiguration of aggregation trees 
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Summary of Dryad & DryadLINQ
n General-purpose platform for scalable distributed 

data-processing of all sorts
n Very flexible

n Optimizations can get more sophisticated
n Designed to be used as middleware

n Slot different programming models on top, e.g.
e.g. DryadLINQ is a designed as a high-level query 
language to support the running of LINQ over High-
Performance Clusters (HPC)



Apache Tez
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Apache Tez – Introduction
n Distributed execution framework

targeting data-processing 
applications.
n NOT a standlone computation engine like 

MapReduce or Spark ; Instead, it is 
intended to be use as a “backend” library

n Based on expressing a computation 
as a DAG dataflow graph.
n Claim to be inspired by Dryad

n Highly customizable to meet a broad 
spectrum of use cases.

n Built on top of YARN – the resource 
management framework for Hadoop.
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Hadoop 1 -> Hadoop 2

HADOOP 1.0

HDFS
(redundant, reliable storage)

MapReduce
(cluster resource management

& data processing)

Pig
(data flow)

Hive
(sql)

Others
(cascading)

HDFS2
(redundant, reliable storage)

YARN
(cluster resource management)

Tez
(execution engine/ framework)

HADOOP 2.0
Data Flow

Pig
SQL
Hive

Others
(Cascading)

Batch
MapReduce Real Time 

Stream 
Processing
Storm

Online 
Data 

Processing
HBase,

Accumulo

Monolithic
• Resource Management
• Execution Engine
• User API

Layered
•Resource Management – YARN
•Execution Engine – Tez
•User API – Hive, Pig, Cascading, Your
App, even experimental support for
MapReduce and Spark !!
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Tez – Design Themes
n Expressing the computation via Dataflow APIs

n Direct representation of the data processing flow
n Flexible Input-Processor-Output runtime model
n Data Type Agnostic
n Performance Optimizations

n Late Binding : Make decisions as late as possible 
using real data from at runtime

n Leverage the resources of the cluster efficiently
n Customizable engine to let applications tailor the job 

to meet their specific requirements
n Simplifying Operations

n Facilitate installation, operations, testing, experiments 
and upgrade
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Tez – Expressing the computation

Distributed data processing jobs typically look like DAGs
(Directed Acyclic Graph).
n Vertices in the graph represent data transformations
n Edges represent data movement from producers to

consumers

Aggregate Stage

Partition Stage          

Preprocessor Stage

Sampler

Task-A1 Task-A2

Task-B1 Task-B2

Task-C1 Task-C2

Sample
s

Ranges

Distributed Sort
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Dataflow definition API’s
n Enable definition of complex data flow pipelines using simple 

graph connection API’s. Tez expands the logical plan at 
runtime.

n Targeted towards data processing applications like Hive/Pig 
but not limited to it. Hive/Pig query plans naturally map to Tez 
dataflow graphs with no translation impedance.

TaskA-1 TaskA-2 TaskB-1 TaskB-2 TaskC-1 TaskC-2

TaskD-1 TaskD-2 TaskE-1 TaskE-2
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Flexible Input-Processor-Output runtime model in 
form of Library

n Construct physical runtime executors 
dynamically by connecting different 
Inputs, Processors and Outputs.

n End goal is to have a library of Inputs, 
Outputs and Processors that can be 
programmatically composed to generate 
useful tasks.

Mapper

HDFSInput

MapProcessor

FileSortedOutput

FinalReduce

ShuffleInput

ReduceProcessor

HDFSOutput

IntermediateJoiner

Input1

JoinProcessor

FileSortedOutput

Input2

• What is built in?
– Hadoop 

InputFormat/OutputForma
t
– OrderedPartitioned Key-

Value Input/Output
– UnorderedPartitioned Key-

Value Input/Output
– Key-Value Input/Output 
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MapReduce as a 2-vertex sub-set of Tez
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But Tez can be much more
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Data Type Agnostic
n Tez is only concerned with the movement of data. Files 

and streams of bytes.
n Does not impose any data format on the user application. 

MapReduce application can use Key-Value pairs on top 
of Tez. Hive and Pig can use tuple oriented formats that 
are natural and native to them.

File

Stream

Key Value

Tez 
Task

Tuples

User Code

Bytes Bytes
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Simplifying Deployment

Client
Machine

Node
Manager

TezTask

Node
Manager

TezTaskTezClient

HDFS
Tez Lib 1 Tez Lib 2

Client
Machine

TezClient

n Tez is a completely-client-side application.
n No servers to be deployed

n Simply upload to any accessible File System & change local Tez
configuration to point to that.

n Enable running different versions concurrently. Facilitate 
testing of new functionality while keeping stable versions for 
production.

n Leverages YARN local resources.
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Tez – Execution Performance

n Performance gains over Map Reduce
n Optimal resource management via YARN 

Container-Reuse/Sharing
n Plan reconfiguration at runtime
n Dynamic physical data flow decisions
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Tez Execution Performance Gain vs. MapReduce
n Eliminate replicated write barrier between successive 

computations.
n Eliminate job launch overhead of workflow jobs.
n Eliminate extra stage of map reads in every workflow job.
n Eliminate queue and resource contention suffered by 

workflow jobs that are started after a predecessor job 
completes.

Pig/Hive - MR
Pig/Hive - Tez
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Tez – Execution Performance
n Optimal resource management

n Reuse YARN containers/JVMs to launch new tasks
n Reduce scheduling and launching delays
n Enable Sharing of in-memory Data/Objects across tasks
n JVM JIT friendly execution

YARN Container

TezTask Host

TezTask
1

TezTask
2 Sh

ar
ed

 O
bj

ec
ts

YARN Container

Tez 
Application Master

Start Task

Task Done

Start Task
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Tez Container reuse

n Tez specific feature
n Run an entire DAG using the same containers
n Different vertices use same container
n Saves time talking to YARN for new containers
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Tez – Execution Performance
n Plan reconfiguration at runtime

n Dynamic runtime concurrency control based on data size, 
user operator resources, available cluster resources and 
locality.

n Advanced changes in dataflow graph structure.
n Progressive graph construction in concert with user 

optimizer.

HDFS 
Blocks

YARN
Resources

Stage 1
50 maps

100
partitions

Stage 2
100

reducers

Stage 1
50 maps

100 
partitions

Stage 2
100 10 

reducers

Only 10GB’s 
of data
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Tez – Execution Performance
n Dynamic physical data flow decisions

n Decide the type of physical byte movement and storage 
on the fly.

n Store intermediate data on distributed store, local store or 
in-memory.

n Transfer bytes via blocking files or streaming and the 
spectrum in between.

Producer
(small size)

In-Memory

Consumer

Producer

Local File

Consumer

At Runtime
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Organization of the Tez Framework
Tez provides the following APIs to define the work
nDAG API

• Define the structure of the data processing and the
relationship between producers and consumers

• Enable definition of complex data flow pipelines using
simple graph connection API’s. Tez expands the logical
DAG at runtime

• This is how all the tasks in the job get specified
•Runtime API

• Define the interface using which the Framework and App
code interact with each other

• App code transforms data and moves it between tasks
• This is how one can specify what actually executes in

each task on the cluster nodes
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The DAG API of Tez 

DAG dag = new DAG();
Vertex map1 = new Vertex(MapProcessor.class);

Vertex map2 = new Vertex(MapProcessor.class);
Vertex reduce1 = new Vertex(ReduceProcessor.class);
Vertex reduce2 = new Vertex(ReduceProcessor.class);      
Vertex join1 = new Vertex(JoinProcessor.class);
…….

Edge edge1 = Edge(map1, reduce1, 
SCATTER_GATHER, PERSISTED, SEQUENTIAL, 
MOutput.class, RInput.class);

Edge edge2 = Edge(map2, reduce2, SCATTER_GATHER, PERSISTED, 
SEQUENTIAL, MOutput.class, RInput.class);

Edge edge3 = Edge(reduce1, join1, SCATTER_GATHER, PERSISTED, 
SEQUENTIAL, MOutput.class, RInput.class);

Edge edge4 = Edge(reduce2, join1, SCATTER_GATHER, PERSISTED, 
SEQUENTIAL, MOutput.class, RInput.class);
…….

dag.addVertex(map1).addVertex(map2)
.addVertex(reduce1).addVertex(reduce2)
.addVertex(join1)
.addEdge(edge1).addEdge(edge2)
.addEdge(edge3).addEdge(edge4);

reduce1

map2

reduce2

join1

map1

Scatter_Gather
Bipartite 
Sequential

Scatter_Gather
Bipartite 
Sequential

Use the DAG API to define Global Processing Flow
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DAG API of Tez: Edge Properties 

n Data movement – Define routing of data between tasks
n One-To-One : Data from the ith producer task routes to the ith

consumer task.
n Broadcast : Data from a producer task routes to all consumer 

tasks.
n Scatter-Gather : Producer tasks scatter data into shards and 

consumer tasks gather the data. The ith shard from all producer 
tasks routes to the ith consumer task.

n Scheduling – Define when a consumer task is scheduled
n Sequential : Consumer task may be scheduled after a producer task 

completes.
n Concurrent : Consumer task must be co-scheduled with a producer 

task.
n Data source – Define the lifetime/reliability of a task output

n Persisted : O/P will be available after the task exits. Output may be 
lost later on.

n Persisted-Reliable : O/P is reliably stored and will always be 
available

n Ephemeral : O/P is available only while the producer task is running

Edge properties define the connection between producer 
and consumer vertices in the DAG

One-to-One

Broadcast

Scatter-
Gather
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Logical DAG expansion at Runtime

reduce1

map2

reduce2

join1

map1
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Runtime API building blocks of Tez
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Tez – Sessions

Application Master

Client
Start 
Session

Submit
DAG

Task Scheduler

Co
nt

ai
ne

r P
oo

l
Shared 
Object 

Registry

Pre 
Warmed

JVM

Sessions
• Standard concepts of pre-launch 

and pre-warm applied
• Key for Interactive queries
• Analogous to database sessions 

and represent a connection 
between the user and the cluster

• A session can run Multiple 
DAGs/Queries executed in the 
same AM

• Maintains a pool of reusable 
containers for low latency 
execution of tasks within and 
across queries

• Take care of data locality and 
releasing resources when idle

• Session cache in the Application 
Master and in the container pool 
reduce re-computation and re-
initialization
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Tez – Re-Use in Action (In Session)

Task Execution 
Timeline
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Tez – Deep Dive

n DAG API
n Runtime API and Event Model
n Dynamic Graph Reconfiguration
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Tez – Deep Dive – Task Execution

Task Attempt
(real on machine)

Task Attempt
(logical in AM)

Env, cmd line, 
resources

Tez Task JVM

Input
Processor

Output

Get Task

Start container

Input

Processor

OutputControl/Data
Information

Data Events
Control Events

• Start task shell with 
user specified env,
resources etc.

• Fetch and 
instantiate Input, 
Processor, Output
objects

• Receive 
(incremental) input 
information and 
process the input

• Provide output 
information

• Provide 
control/error events
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Tez Deep Dive – Runtime Events

Reduce Task 2

Input1 Input2

Map Task 2
Output1

Output2
Output3

Map Task 1
Output1

Output2
Output3

Error Event

AM
Router

Scatter-Gather Edge

• Events used to communicate 
between the tasks and between 
task and ApplicationMaster (AM)

• Data Movement Event used by 
producer task to inform the 
consumer task about data 
location, size etc.

• Input Error event sent by task to 
AM to inform about errors in 
reading input. AM then takes 
action by re-generating the input

• Other events to send task 
completion notification, data 
statistics and other control plane 
information 
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Tez Deep Dive – Runtime Events

Reduce Task 2

Input1 Input2

Map Task 2
Output1

Output2
Output3

Data Event

Map Task 1
Output1

Output2
Output3

Error Event

AM
Router

Scatter-Gather Edge

• Events used to communicate 
between the tasks and between 
task and ApplicationMaster (AM)

• Data Movement Event used by 
producer task to inform the 
consumer task about data 
location, size etc.

• Input Error event sent by task to 
AM to inform about errors in 
reading input. AM then takes 
action by re-generating the input

• Other events to send task 
completion notification, data 
statistics and other control plane 
information 



Dryad & Tez 101

Tez Deep Dive – Runtime Events

Reduce Task 2

Input1 Input2

Map Task 2
Output1

Output2
Output3

Data Event

Map Task 1
Output1

Output2
Output3

Error Event

AM
Router

Scatter-Gather Edge

• Events used to communicate 
between the tasks and between 
task and ApplicationMaster (AM)

• Data Movement Event used by 
producer task to inform the 
consumer task about data 
location, size etc.

• Input Error event sent by task to 
AM to inform about errors in 
reading input. AM then takes 
action by re-generating the input

• Other events to send task 
completion notification, data 
statistics and other control plane 
information 
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Tez – Deep Dive – Core Engine

reduce1

map1

Start
vertex

Vertex Manager

Start
tasks

DAG
Scheduler

Get Priority

Get Priority

Start
vertex

Task
Scheduler

Get container

Get container

• Vertex Manager
• Determine task 

parallelism
• Determine when 

tasks in a vertex 
can start.

• DAG Scheduler
Determine priority of 
task
• Task Scheduler
Allocate containers from 
YARN and assigns them 
to tasks
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Tez – Automatic Reduce Parallelism

Event Model
Map tasks send data 
statistics events to 
the Reduce Vertex 
Manager.

Vertex Manager
Pluggable user logic 
that understands the 
data statistics and 
can formulate the 
correct parallelism. 
Advise vertex 
controller on 
parallelism

Map Vertex

Reduce Vertex
App Master

Vertex Manager

Vertex State
Machine

Cancel Task
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Tez – Automatic Reduce Parallelism

Event Model
Map tasks send data 
statistics events to 
the Reduce Vertex 
Manager.

Vertex Manager
Pluggable user logic 
that understands the 
data statistics and 
can formulate the 
correct parallelism. 
Advise vertex 
controller on 
parallelism

Map Vertex

Reduce Vertex
App Master

Vertex Manager
Data Size Statistics

Vertex State
Machine

Cancel Task
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Tez – Automatic Reduce Parallelism

Event Model
Map tasks send data 
statistics events to 
the Reduce Vertex 
Manager.

Vertex Manager
Pluggable user logic 
that understands the 
data statistics and 
can formulate the 
correct parallelism. 
Advise vertex 
controller on 
parallelism

Map Vertex

Reduce Vertex
App Master

Vertex Manager
Data Size Statistics

Vertex State
Machine

Set Parallelism

Cancel Task

Re-Route
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Tez – Reduce Slow Start/Pre-launch

Event Model
Map completion 
events sent to the 
Reduce Vertex 
Manager.

Vertex Manager
Pluggable user logic 
that understands the 
data size. Advise the 
vertex controller to 
launch the reducers 
before all maps have 
completed so that 
shuffle can start.

Map Vertex

Reduce Vertex
App Master

Vertex Manager

Vertex State
Machine
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Tez – Reduce Slow Start/Pre-launch

Event Model
Map completion 
events sent to the 
Reduce Vertex 
Manager.

Vertex Manager
Pluggable user logic 
that understands the 
data size. Advise the 
vertex controller to 
launch the reducers 
before all maps have 
completed so that 
shuffle can start.

Map Vertex

Reduce Vertex
App Master

Vertex Manager
Task Completed

Vertex State
Machine
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Tez – Reduce Slow Start/Pre-launch

Event Model
Map completion 
events sent to the 
Reduce Vertex 
Manager.

Vertex Manager
Pluggable user logic 
that understands the 
data size. Advise the 
vertex controller to 
launch the reducers 
before all maps have 
completed so that 
shuffle can start.

Map Vertex

Reduce Vertex
App Master

Vertex Manager
Task Completed

Vertex State
Machine

Start Tasks

Start
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Tez – Automatic Map Parallelism

• Input vertex 
manager gets block 
locations and 
estimates the 
number of mappers 
based on data size, 
cluster capacity and 
map data limits. 
Groups block by 
locality

• Consumer vertex 
parallelism gets 
recursively 
determined through 
the chain of 
consumer vertices

Map Vertex

1-1 Edges

1-1 Edges
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Tez – Automatic Map Parallelism

• Input vertex 
manager gets block 
locations and 
estimates the 
number of mappers 
based on data size, 
cluster capacity and 
map data limits. 
Groups block by 
locality

• Consumer vertex 
parallelism gets 
recursively 
determined through 
the chain of 
consumer vertices

Map Vertex
Set 
Parallelism

HDFS

Get 
Block
Locations 1-1 Edges

1-1 Edges
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Tez – Automatic Map Parallelism

• Input vertex 
manager gets block 
locations and 
estimates the 
number of mappers 
based on data size, 
cluster capacity and 
map data limits. 
Groups block by 
locality

• Consumer vertex 
parallelism gets 
recursively 
determined through 
the chain of 
consumer vertices

Map VertexSet 
Parallelism

HDFS

Get 
Block
Locations
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End User Benefits from Tez
• Better Performance

• Framework performance + application performance
• Better utilization of cluster resources

• Efficient use of allocated resources
• Better predictability of results

• Minimized queuing delays
• Reduced load on HDFS

• Removes unnecessary HDFS writes
• Reduced network usage

• Efficient data transfer using new data patterns
• Increased developer productivity

• Lets the user concentrate on application logic instead 
of Hadoop internals
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Tez – Broadcast Edge

SELECT ss.ss_item_sk, avg_price, inv.inv_quantity_on_hand
FROM (select avg(ss_sales_price) as avg_price, ss_item_sk from 

store_sales
group by ss_item_sk) ss

JOIN inventory inv

ON (inv.inv_item_sk = ss.ss_item_sk);

M M M

HDFS

Store Sales scan. 
Group by and 
aggregation.

Inventory and Store 
Sales (aggr.) output 
scan and shuffle 
join.

R R

R R

MMM

HDFS

M M M

HDFS

Store Sales scan. 
Group by and 
aggregation.

Inventory and Store 
Sales (aggr.) output 
scan and shuffle 
join.

R R

MMM

broadcast
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Tez – Multiple Outputs
FROM (SELECT * FROM store_sales, date_dim WHERE ss_sold_date_sk = 

d_date_sk and d_year = 2000)

INSERT INTO TABLE t1 SELECT distinct ss_item_sk

INSERT INTO TABLE t2 SELECT distinct ss_customer_sk;

Hive : Multi-insert queries
Hive – MR Hive – Tez

M MM

M

HDFS

Map join 
date_dim/store 
sales

Two MR jobs to 
do the distinct

M MM

M M

HDFS

RR

HDFS

M M M

R

M M M

R

HDFS

Broadcast Join 
(scan date_dim, 
join store sales)

Distinct for 
customer + items

Materialize join on 
HDFS
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Recap: Tez – Data at scale

Hive TPC-DS 
Scale 10TB
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Tez – what if you can’t get enough containers?

n 78 vertex + 8374 tasks on 50 YARN containers
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Tez – Designed for big, busy clusters

n Number of stages in the DAG
n Higher the number of stages in the DAG, performance of Tez (over 

MR) will be better.
n Cluster/queue capacity

n More congested a queue is, the performance of Tez (over MR) will be 
better due to container reuse.

n Size of intermediate output
n Larger the size of intermediate output, the performance of Tez (over 

MR) will be better due to reduced HDFS usage (cross-rack traffic)
n Size of data in the job

n For smaller data and more stages, the performance of Tez (over MR) 
will be better as percentage of launch overhead in the total time is 
high for smaller jobs.

n Move workloads from gateway boxes to the cluster
n Move as much work as possible to the cluster by modelling it via the 

job DAG. Exploit the parallelism and resources of the cluster.
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Tez – Bridge the Data Spectrum

Fact Table Dimension 
Table 1

Result 
Table 1

Dimension 
Table 2

Result 
Table 2

Dimension 
Table 3

Result 
Table 3

Broadcast
Join

Shuffle
Join

Typical pattern in a 
TPC-DS query

Fact Table
Dimension 

Table 1

Dimension 
Table 3

Dimension 
Table 2

Broadcast join 
for small data sets

Based on data size, 
the query optimizer 
can run either plan 
as a single Tez job

Broadcast
Join
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Tez – Benchmark Performance

Significant (but not all) speedups due to Tez
• DAG support and runtime graph 

reconfiguration enable utilizing the 
parallelism of the cluster

• Tez Session and container reuse enable efficient 
and low latency execution
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Tez – Performance Analysis

Architecting the Future of Big Data

Tez Session populates 
container pool

Dimension table 
calculation and HDFS 
split generation in 
parallel

Dimension tables 
broadcasted to Hive 
MapJoin tasks

Final Reducer pre-
launched and fetches 
completed inputs

TPCDS – Query-27 with Hive on Tez
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Tez – Roadmap

n Richer DAG support
n Support for co-scheduling and streaming
n Better fault tolerance with checkpoints

n Performance optimizations
n More efficiencies in transfer of data
n Improve session performance

n Usability.
n Stability and testability
n Recovery and history
n Tools for performance analysis and debugging



Dryad & Tez 122

Tez – Adoption 
n Hive

n Hadoop standard for declarative access via SQL-like 
interface

n Pig
n Hadoop standard for procedural scripting and pipeline 

processing
n Cascading

n Developer friendly Java API and SDK
n Scalding (Scala API on Cascading)

n Commercial Vendors
n ETL : Use Tez instead of MR or custom pipelines
n Analytics Vendors : Use Tez as a target platform for 

scaling parallel analytical tools to large data-sets
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Tez – Community
n Technical blog series

n http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-
processing

n Apache Wiki https://cwiki.apache.org/confluence/display/TEZ/Index

n Tez meetup for developers and users
n http://www.meetup.com/Apache-Tez-User-Group

n Hive and Pig communities are on-board and 
making great progress -
n HIVE-4660 and PIG-3446

n Useful links
n Work tracking: https://issues.apache.org/jira/browse/TEZ
n Code: https://github.com/apache/tez
n Developer list: dev@tez.apache.org

User list: user@tez.apache.org
Issues list: issues@tez.apache.org

http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://www.meetup.com/Apache-Tez-User-Group
https://issues.apache.org/jira/browse/TEZ
https://github.com/apache/tez
mailto:dev@tez.incubator.apache.org
mailto:user@tez.incubator.apache.org
mailto:issues@tez.incubator.apache.org
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Tez Summary
n Distributed execution framework that works on computations 

represented as dataflow graphs
n Naturally maps to execution plans produced by query 

optimizers
n Customizable execution architecture designed to enable 

dynamic performance optimizations at runtime
n Span the spectrum of interactive latency to batch
n It is already being used by Hive and Pig



Dataflow systems
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Why dataflow systems have been so 
popular upto now?

n Collection-oriented programming model
n Operations on collections of objects
n Turn spurious (unordered) for into foreach
n Not every for is foreach

n Aggregation (sum, count, max, etc.)
n Grouping
n Join, Zip

n Iteration
n LINQ since ca 2008, now Spark via Scala, Java
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int SortKey(KeyValuePair<string,int> x)
{

return x.count;
}

int SortKey(void* x)
{

return (KeyValuePair<string,int>*)x->count;
}

Given some lines of text, 
find the most commonly 
occurring words.

1. Read the lines from a file
2. Split each line into its constituent words
3. Count how many times each word appears
4. Find the words with the highest counts

1. var lines = FS.ReadAsLines(inputFileName);
2. var words = lines.SelectMany(x => x.Split(‘ ‘));
3. var counts = words.CountInGroups();
4. var highest =

counts.OrderByDescending(x => x.count).Take(10);

Type inference

Collection<KeyValuePair<string,int>>

Lambda 
expressions

Generics and extension 
methods

FooCollection FooTake(FooCollection c, int count) { … }

Well-chosen syntactic sugar

red,2
blue,4

yellow,3

red

red

blue

blueblue blue
yellow

yellow
yellow

Collection<T> Take(this Collection<T> c, int count) { … }



Dryad & Tez 128

Collections compile to dataflow
n Each operator specifies a single data-parallel step
n Communication between steps explicit

n Collections reference collections, not individual objects!
n Communication under control of the system

n Partition, pipeline, exchange automatically

n LINQ innovation: embedded user-defined functions
var words = lines.SelectMany(x => x.Split(‘ ‘));

n Very expressive
n Programmer ‘naturally’ writes pure functions
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Quiet revolution in parallelism
n Programming model is more attractive

n Simpler, more concise, readable, maintainable
n Program is easier to optimize

n Programmer separates computation and communication
n System can re-order, distribute, batch, etc. etc.
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Stateless DAG dataflow
n MapReduce, Dryad, Spark, …
n Stateless vertex constraint hampers performance

n Iteration and streaming overheads
n Why does this design keep repeating?

n An Engineering Sweet Spot !
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Software engineering
n Fault tolerance well understood

n E.g., Chandy-Lamport, rollback recovery, etc.
n Basic mechanism: checkpoint plus log
n Stateless DAG: no checkpoint!
n Programming model “tricked” user

n All communication on typed channels
n Only channel data needs to be persisted
n Fault tolerance comes without programmer effort
n Even with UDFs
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Beyond Stateless DAG Dataflow
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Batch 
processing

Stream 
processing

Graph 
processing

Timely dataflow
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Batching Streamingvs.

û Requires coordination
ü Supports aggregation

ü No coordination needed
û Aggregation is difficult

(synchronous) (asynchronous)
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Mutable state
n In batch DAG systems collections are immutable

n Functional definition in terms of preceding subgraph
n Adding streaming or iteration introduces mutability

n Collection varies as function of epoch, loop iteration
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What about stateful dataflow?
n Microsoft Naiad

n Add state to vertices
n Support streaming and iteration

n Opportunities
n Much lower latency
n Can model mutable state with dataflow

n Challenges
n Scheduling
n Coordination
n Fault tolerance
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What can’t dataflow do?
n Programming model for mutable state?

n Not as intuitive as functional collection manipulation
n Policies for placement still primitive

n Hash everything and hope
n Great research opportunities

n Intersection of OS, network, runtime, language
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Conclusions
n Dataflow is a great structuring principle

n We know good programming models
n We know how to write high-performance systems

n Dataflow is the status quo for batch processing
n Mutable state (i.e. Stateful Dataflow Systems 

supporting incremental recovery) are the current 
(circa 2015) research frontier


