
IERG4330

DAG-based Dataflow Systems:
Dryad, DryadLINQ, Tez and Beyond

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

Dryad & Tez 2

Acknowledgements
n The slides are adapted from the following source materials:

n Michael Isard et al, “Dryad: Distributed and Data-Parallel Programs from
Sequential Building Blocks,” Eurosys 2007.

n Yuan Yu et al, “DryadLINQ: A System for General-Purpose Distributed Data-
Parallel Computing using a High-level Language,” Usenix OSDI 2008.

n Michael Isard, “Dryad and Dataflow Systems,” June 2014.
n The DryadLINQ project page:

n http://research.microsoft.com/en-us/projects/dryadlinq/default.aspx
n Andrew Birrell et al, “Distributed Data-Parallel Programming using Dryad,”

talk at UC Santa Cruz, Feb 2008.
n Mihai Budiu, “Cluster Computing with Dryad,” Mar 2008.
n Tathagata Das, “DryadLINQ,” Talk at UC Berkeley, Oct 2011.
n Bikas Saha et al, “Apache Tez: A Unifying Framework for Modeling and

Building Data Processing Applications,” ACM SIGMOD 2015.
n Bikas Saha, “Apache Tez: Accelerating Hadoop Query Processing,” 2013.
n Rajesh Balamohan, “Data Processing over YARN,” talk at Hadoop Meetup,

2014.
n All copyrights belong to the original authors of the materials.

http://research.microsoft.com/en-us/projects/dryadlinq/default.aspx

Dryad & Tez 3

What is Dryad?
n General-purpose DAG execution engine project launched

circa 2005
n Cited as inspiration for e.g. Hyracks, Tez

n Engine behind Microsoft Cosmos/SCOPE
n Initially for MSN Search/Bing, later used throughout MSFT

n Core of research batch cluster environment ca 2009
n DryadLINQ, Quincy scheduler, TidyFS

n In Nov 2011, Microsoft dropped plans to
productize/commercialize Dryad to focus on Hadoop
instead:

n http://www.zdnet.com/article/microsoft-drops-dryad-puts-its-big-data-bets-on-hadoop/

n Dryad & DryadLINQ on YARN have been open-sourced
under the Apache 2.0 licensed on GitHub:

http://research.microsoft.com/en-
us/um/siliconvalley/projects/BigDataDev/

http://research.microsoft.com/en-us/um/siliconvalley/projects/BigDataDev/

Dryad & Tez 4

Goals of the Dryad Project
n General-purpose execution environment for

distributed, data-parallel applications
n Concentrates on throughput not latency
n Assumes private data center (=> security???)

n Automatic management of scheduling, distribution,
fault tolerance, etc.

Dryad & Tez 5

Outline
n Motivation - what’s wrong with MapReduce ?
n What is Dryad ?
n What is DryadLINQ ?
n What is Tez ?
n Why is dataflow so useful?

n An engineering sweet spot
n Beyond Stateless DAG Dataflow

Dryad & Tez 6

What’s wrong with MapReduce?
n Literally Map then Reduce and that’s it…

n Reducers write to replicated storage
n Complex jobs pipeline multiple stages

n No fault tolerance between stages
n Map assumes its data is always available: simple!

n Output of Reduce: 2 network copies, write 3 disks
n In Dryad this collapses inside a single process
n Big jobs can be more efficient with Dryad

Dryad & Tez 7

What’s wrong with Map+Reduce?
n Join combines inputs of different types
n “Split” produces outputs of different types

n Parse a document, output text and references
n Can be done with Map+Reduce

n Ugly to program
n Hard to avoid performance penalty
n Some merge joins very expensive

n Need to materialize entire cross product to disk

Dryad & Tez 8

How about Map+Reduce+Join+…?
n “Uniform” stages aren’t really uniform

Dryad & Tez 9

How about Map+Reduce+Join+…?
n “Uniform” stages aren’t really uniform

Dryad & Tez 10

Graph complexity composes
n Non-trees common
n E.g. data-dependent re-partitioning

n Combine this with merge trees etc.

Distribute to equal-sized ranges

Sample to estimate histogram

Randomly partitioned inputs

Dryad & Tez 11

Main Idea of Dryad
n Represent the computation as a Directed Acyclic

Graph (DAG) of communicating sequential
processes

Dryad & Tez 12

A Dryad Job = Directed Acyclic Graph

Processing
vertices Channels

(Temp file,
TCP pipe,
Shared
FIFO
memory)

Inputs

Outputs

Dryad & Tez 13

Support Multiple ways of Communications
(b/w Vertices of the Computation Graph)

Dryad & Tez 14

The DAG Computational model
n Vertices are independent

n State and scheduling**

n Dataflow very powerful
n Explicit batching and communication

Processing
vertices Channels

Inputs

Outputs

**Not so Straightforward for Channels realized
by TCP Pipe or Shared Memory FIFO !

Dryad & Tez 15

Constructing the Job
n Use graph operators implemented as a C++ library to

describe the graph:

Dryad & Tez 16

Example: a Dryad Job for Database Query

Dryad & Tez 17

Dryad Key Features
n Dataflow graph is mutable at runtime

n Repartition to avoid skew
n Specialize matrices dense/sparse
n Harden fault-tolerance

n Support general-purpose refinement rules for
Optimization
n Processes formed from subgraphs
n Re-arrange computations, change I/O type

n Application code not modified !
n System at liberty to make optimization choices

n High-level front ends hide this from user
n SQL query planner, etc.

Dryad & Tez 18

Run-time Graph Refinement

Dryad & Tez 19

Run-time Graph Refinement (cont’d)

Dryad & Tez 20

What Dryad does ?
n Abstracts cluster resources

n Set of computers, network topology, etc.
n Recovers from transient failures

n Rerun computations on machine or network fault
n Speculate duplicates for slow computations

n Schedules a local DAG of work at each vertex

Dryad & Tez 21

Dryad System Architecture

n Job Manager (JM)
n Centralized coordinating process
n User application to construct graph
n Linked with Dryad libraries for scheduling vertices

n Vertex executable
n Dryad libraries to communicate with JM
n User application sees channels in/out
n Arbitrary application code, can use local Filesystem

V V V

Dryad & Tez 22

Dryad System Architecture (cont’d)

n Services
n Name server enumerates all resources
n Including location relative to other resources
n Daemon running on each machine for vertex dispatch

Dryad & Tez 24

Execution
n Job manager not currently fault tolerant
n Vertices may be scheduled multiple times

n Each execution versioned
n Execution record kept- including versions of

incoming vertices
n Outputs are uniquely named (versioned)
n Final outputs selected if job completes
n Non-file channel communication may cascade

failures
n Vertices specify hard constraints or

preferences (Hints) for placement
n Scheduling is greedy assuming only one job

Dryad & Tez 25

Scheduler state machine
n Scheduling is independent of semantics

n Vertex can run anywhere once all its inputs are
ready

n Fault tolerance
n If A fails, run it again
n If A’s inputs are gone, run upstream vertices again

(recursively)
n If A is slow, run another copy elsewhere and use

output from whichever finishes first

Dryad & Tez 26

Scheduling and fault tolerance

n DAG makes things easy
n Schedule from source to sink in any order as long

as inputs to a vertex is ready
n Re-execute subgraph on failure
n Execute “duplicates” for slow vertices

Dryad & Tez 28

Resources are virtualized
n Each graph vertex is a process

n Write outputs to disk (usually, but not always !)
n Read inputs from upstream nodes’ output files

n Graph generally larger than cluster RAM
n 1TB partitioned input, 250MB part size, 4000 parts

n Cluster is shared
n Don’t size program for exact cluster
n Use whatever share of resources are available

Dryad & Tez 29

Example: SkyServer DB Query
n 3-way join to find gravitational lens effect
n Table U: (objId, color) 11.8GB
n Table N: (objId, neighborId) 41.8GB
n Find neighboring stars with similar colors:

n Join U+N to find
T = U.color,N.neighborId where U.objId = N.objId

n Join U+T to find
U.objId where U.objId = T.neighborID

and U.color ≈ T.color

Dryad & Tez 30

SkyServer DB query

Dryad & Tez 31

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

U U

n Took SQL plan
n Manually coded in Dryad
n Manually partitioned data

SkyServer DB query

u: objid, color

n: objid, neighborobjid

[partition by objid]

select

u.color,n.neighborobjid

from u join n

where

u.objid = n.objid

(u.color,n.neighborobjid)

[re-partition by
n.neighborobjid]

[order by n.neighborobjid]

[distinct]

[merge outputs]

select

u.objid

from u join <temp>

where

u.objid =
<temp>.neighborobjid and

|u.color - <temp>.color| < d

Dryad & Tez 32

Recap: Automatic Optimizing
Dryad applications

n General-purpose refinement rules
n DAG mutation during run-time !
n Processes formed from subgraphs

n Re-arrange computations, change I/O type
n Application code not modified

n System at liberty to make optimization choices
n High-level front ends hide this from user

n SQL query planner, etc.

Dryad & Tez 34

Optimization

D

M

S

Y

X

M

S

M

S

M

S

U N

U

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

U U

Dryad & Tez 35

Performance Results

n SQL Query
n 10 Machines

n 2 dualcore 2 GHz
n 8 GB Mem
n 1 Gb Ethernet
n 4x400GB disks
n Winows Server 2003

Dryad & Tez 36

Another Example: Query histogram
computation

n Input: log file (n partitions)
n Extract queries from log partitions
n Re-partition by hash of query (k buckets)
n Compute histogram within each bucket

Dryad & Tez 37

Naïve histogram topology

Q Q

R

Q

R k

k

k

n

n

is:Each

R
is:

Each

MS

C

P

C

S

C

S

D

P parse lines
D hash distribute

S quicksort
C count

occurrences
MS merge sort

Dryad & Tez 38

Efficient histogram topology

P parse lines
D hash distribute

S quicksort
C count

occurrences
MS merge sort
M non-deterministic

merge

Q' is:Each

R
is:

Each

MS

C

M

P

C

S

Q'

RR k

T

k

n

T
is:

Each

MS

D

C

Dryad & Tez 39

RR

T

Q
’

MS►C►D

M►P►S►C

MS►C

P parse lines D hash distribute
S quicksort MS merge sort
C count occurrences M non-deterministic merge

R

Dryad & Tez 40

MS►C►D

M►P►S►C

MS►C

P parse lines D hash distribute
S quicksort MS merge sort
C count occurrences M non-deterministic merge

RR

T

R

Q
’

Q
’

Q
’

Q
’

Dryad & Tez 41

MS►C►D

M►P►S►C

MS►C

P parse lines D hash distribute
S quicksort MS merge sort
C count occurrences M non-deterministic merge

RR

T

R

Q
’

Q
’

Q
’

Q
’

T

Dryad & Tez 42

MS►C►D

M►P►S►C

MS►C

P parse lines D hash distribute
S quicksort MS merge sort
C count occurrences M non-deterministic merge

RR

T

R

Q
’

Q
’

Q
’

Q
’

T

Dryad & Tez 43

P parse lines D hash distribute
S quicksort MS merge sort
C count occurrences M non-deterministic merge

MS►C►D

M►P►S►C

MS►C RR

T

R

Q
’

Q
’

Q
’

Q
’

T

Dryad & Tez 44

P parse lines D hash distribute
S quicksort MS merge sort
C count occurrences M non-deterministic merge

MS►C►D

M►P►S►C

MS►C RR

T

R

Q
’

Q
’

Q
’

Q
’

T

Dryad & Tez 45

Final histogram refinement

Q' Q'

RR 450

TT 217

450

10,405

99,713

33.4 GB

118 GB

154 GB

10.2 TB

1,800 computers
43,171 vertices

11,072 processes
11.5 minutes

Dryad & Tez 46

How does Dryad fit in?

n Target Users/Developers of the “Raw” Dryad
middleware:
n Experienced C++ developer
n Can write good single-threaded code
n Wants generality, can tune performance

n Higher-level front ends for broader audience:
n Many programs can be represented as a distributed

execution graph
n The programmer may not have to know this

n “SQL-like” queries: LINQ
n High-level queries compiled into DAGs automatically and Dryad

will run them for you

Dryad & Tez 47

The Dryad Ecosystem

n Well-tested at scales up to 15k cluster computers
n In heavy (Microsoft in-house) production use for 8 years

Dryad & Tez 48

Integrated system
n Collection-oriented programming model (LINQ)
n Partitioned file system (TidyFS)

n Manages replication and distribution of large data
n Cluster scheduler (Quincy)

n Jointly schedule multiple jobs at a time
n Fine-grain multiplexing between jobs
n Balance locality and fairness

n Monitoring and debugging (Artemis)
n Within job and across jobs

Dryad & Tez 49

Dryad vs. DryadLINQ
n Dryad provides a low-level parallel data flow

processing interface
n Acyclic data flow graphs
n Data communication methods include pipes, file-based,

message, shared-memory

n DryadLINQ
n A high level language for app developers
n It hides the data flow details

Dryad & Tez 50

LINQ and DryadLINQ

Dryad & Tez 51

???

Dryad

Cluster

Shell script

Shell

Machine
≈

Dryad = Execution Engine

Dryad & Tez 52

n Nebula – limited to existing binaries

n Scope – SQL-ish, not general purpose

n Is it possible to do better?
n Can one get the general purpose-ness of C#/Java

and conciseness of SQL?
n And at the same time, be efficient too?

Prior High-level Query Language over Dryad

Dryad & Tez 53

Language Integrated Query (LINQ)

Dryad & Tez 54

Language Integrated Query (LINQ)
n Microsoft’s Language INtegrated Query (LINQ) is an

extension of .Net which allows one to write declarative
computations (i.e. SQL-like) on collections of objects !!
n Available in Visual Studio 2008

n Basic abstraction – collections
“All the world’s a collection, And all the men and women merely iterate on

collections” - implied by Shakespeare

n A set of operators to manipulate datasets in .NET
n Support traditional relational operators
n Select, Join, GroupBy, Aggregate, etc.

n Data model
n Data elements are strongly typed .NET objects
n Much more expressive than SQL tables

n Extensible
n Add new custom operators
n Add new execution providers

Dryad & Tez 55

Collections, Iterators and LINQ

IEnumerable <T>

+
LINQ

=>

IEnumerable <T>

=>

import system.linq;
var result = from num in numbers

where num
% 2 == 0

orderby
num

select
num;

List<int> result = new List<int>();
foreach (int num in numbers) {

if (num % 2 == 0)
result.Add(num);

}
result.sort();

Dryad & Tez 56

Syntactical sweetness of LINQ

var result = from num in numbers
where num % 2

== 0
orderby num
select num;

var result =
numbers.Where(num => num % 2 == 0)

.OrderBy(n => n);

Query Style

Method Style

Dryad & Tez 57

LINQ Functionality

n Select / SelectMany

n Where
n GroupBy

n OrderBy

n Join

n Union / Intersect /
Except

n …

Map (1-to-1 / 1-to-many)

Filter

Reduce

Sort

Join

Set operations

Dryad & Tez 58

LINQ Providers

SQL
XML

…
Google
Wikipedia
Twitter

n Select / SelectMany
n Where
n GroupBy

n OrderBy
n Join

n Union / Intersect /
Except

n …

Dryad & Tez 59

LINQ System Architecture

.Net
Program

LINQ
Provider
Interface

Query

Objects

LINQ-to-SQL

LINQ-to-XML

PLINQ

DryadLINQ

Dryad & Tez 60

Parallel Collections

Partition

Collection

Simplest example: GFS/HDFS file

Dryad & Tez 61

Dryad + LINQ = DryadLINQ

string uri = @"file://\\machine\directory\input.pt";
PartitionedTable<LineRecord> input =

PartitionedTable.Get<LineRecord>(uri);

var lengths = input.Select(line => line.ToString().Length);

Dryad & Tez 62

LINQ

Collection<T> collection;
bool IsLegal(Key);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

Dryad & Tez 63

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

DryadLINQ = LINQ + Dryad

C#

collection

results

C# C# C#

Vertex
code

Query
plan
(Dryad job)Data

Dryad & Tez 64

DryadLINQ
n LINQ: Relational queries integrated in C#
n More general than distributed SQL

n Inherits flexible C# type system and libraries
n Data-clustering, EM, inference, …

n Uniform data-parallel programming model
n From SMP to clusters

Dryad & Tez 65

Word Count with DryadLINQ
string uri = @"file://\\machine\directory\input.pt";
PartitionedTable<LineRecord> input =

PartitionedTable.Get<LineRecord>(uri);

string separator = ",";
var words = input.SelectMany(x => SplitLineRecord(separator));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));

var ordered = counts.OrderByDescending(x => x[2]);

var top = ordered.Take(k);

top.ToDryadPartitionedTable("matching.pt");

Get

SM

G

S

O

Take

Ex
ec

ut
io

n
Pl

an
 G

ra
ph

Dryad & Tez 66

DryadLINQ Word Count àDryad

SM

G

S

O

SM

D

MS

G

S

SM

D

MS

G

S

SM

D

MS

G

S

G G G

D D D

MS MS MS

SM

D

MS

G

S

G

D

MS

Ex
ec

ut
io

n
Pl

an
 G

ra
ph

Da
ta

 F
lo

w
 G

ra
ph

Di
st

rib
ut

ed
 D

at
a

Fl
ow

Gr

ap
h

Dryad & Tez 67

DryadLINQ Code Generation

string uri = @"file://\\machine\directory\input.pt";
PartitionedTable<LineRecord> input =

PartitionedTable.Get<LineRecord>(uri);

string separator = ",";
var words = input.SelectMany(x => SplitLineRecord(separator));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));

var ordered = counts.OrderByDescending(x => x.count);

var top = ordered.Take(k);

top.ToDryadPartitionedTable("matching.pt");

Conversion of subexpressions to
code for Dryad vertices…
1.Local variables
2.Local libraries and functions

Dryad & Tez 68

DryadLINQ Architecture

DryadLIN
Q

Client machine

Distributed
Query Plan.Net

Programs

Query Expr

Cluster

Output Tables

Input
Tables

Query

Dryad
Execution

Dryad
JM

Vertex
code

Con-
text

Dryad & Tez 69

DryadLINQ Architecture (cont’d)

DryadLIN
Q

Client machine

(11)

Distributed
Query Plan.Net

Programs

Query Expr

Cluster

Output TablesResults

Input
TablesInvoke Query

Output
Partitioned-

Table

Dryad
Execution

.Net Objects

Dryad
JM

Vertex
code

Con-
text

Dryad & Tez 70

Combining with LINQ-to-SQL

70

DryadLINQ

Subquery Subquery Subquery Subquery Subquery

Query

LINQ-to-SQL LINQ-to-SQL

Dryad & Tez 71

DryadLINQ Optimizations
n Some are similar to existing DB optimizations

n Eliminate redundant partitioning steps
n Aggregation steps moved up the graph, before

partitioning steps

n Existing Dryad optimizations as well
n Dynamic reconfiguration of aggregation trees

Dryad & Tez 72

Summary of Dryad & DryadLINQ
n General-purpose platform for scalable distributed

data-processing of all sorts
n Very flexible

n Optimizations can get more sophisticated
n Designed to be used as middleware

n Slot different programming models on top, e.g.
e.g. DryadLINQ is a designed as a high-level query
language to support the running of LINQ over High-
Performance Clusters (HPC)

Apache Tez

Dryad & Tez 74

Apache Tez – Introduction
n Distributed execution framework

targeting data-processing
applications.
n NOT a standlone computation engine like

MapReduce or Spark ; Instead, it is
intended to be use as a “backend” library

n Based on expressing a computation
as a DAG dataflow graph.
n Claim to be inspired by Dryad

n Highly customizable to meet a broad
spectrum of use cases.

n Built on top of YARN – the resource
management framework for Hadoop.

Dryad & Tez 75

Hadoop 1 -> Hadoop 2

HADOOP 1.0

HDFS
(redundant, reliable storage)

MapReduce
(cluster resource management

& data processing)

Pig
(data flow)

Hive
(sql)

Others
(cascading)

HDFS2
(redundant, reliable storage)

YARN
(cluster resource management)

Tez
(execution engine/ framework)

HADOOP 2.0
Data Flow

Pig
SQL
Hive

Others
(Cascading)

Batch
MapReduce Real Time

Stream
Processing
Storm

Online
Data

Processing
HBase,

Accumulo

Monolithic
• Resource Management
• Execution Engine
• User API

Layered
•Resource Management – YARN
•Execution Engine – Tez
•User API – Hive, Pig, Cascading, Your
App, even experimental support for
MapReduce and Spark !!

Dryad & Tez 76

Tez – Design Themes
n Expressing the computation via Dataflow APIs

n Direct representation of the data processing flow
n Flexible Input-Processor-Output runtime model
n Data Type Agnostic
n Performance Optimizations

n Late Binding : Make decisions as late as possible
using real data from at runtime

n Leverage the resources of the cluster efficiently
n Customizable engine to let applications tailor the job

to meet their specific requirements
n Simplifying Operations

n Facilitate installation, operations, testing, experiments
and upgrade

Dryad & Tez 77

Tez – Expressing the computation

Distributed data processing jobs typically look like DAGs
(Directed Acyclic Graph).
n Vertices in the graph represent data transformations
n Edges represent data movement from producers to

consumers

Aggregate Stage

Partition Stage

Preprocessor Stage

Sampler

Task-A1 Task-A2

Task-B1 Task-B2

Task-C1 Task-C2

Sample
s

Ranges

Distributed Sort

Dryad & Tez 78

Dataflow definition API’s
n Enable definition of complex data flow pipelines using simple

graph connection API’s. Tez expands the logical plan at
runtime.

n Targeted towards data processing applications like Hive/Pig
but not limited to it. Hive/Pig query plans naturally map to Tez
dataflow graphs with no translation impedance.

TaskA-1 TaskA-2 TaskB-1 TaskB-2 TaskC-1 TaskC-2

TaskD-1 TaskD-2 TaskE-1 TaskE-2

Dryad & Tez 79

Flexible Input-Processor-Output runtime model in
form of Library

n Construct physical runtime executors
dynamically by connecting different
Inputs, Processors and Outputs.

n End goal is to have a library of Inputs,
Outputs and Processors that can be
programmatically composed to generate
useful tasks.

Mapper

HDFSInput

MapProcessor

FileSortedOutput

FinalReduce

ShuffleInput

ReduceProcessor

HDFSOutput

IntermediateJoiner

Input1

JoinProcessor

FileSortedOutput

Input2

• What is built in?
– Hadoop

InputFormat/OutputForma
t
– OrderedPartitioned Key-

Value Input/Output
– UnorderedPartitioned Key-

Value Input/Output
– Key-Value Input/Output

Dryad & Tez 80

MapReduce as a 2-vertex sub-set of Tez

Dryad & Tez 81

But Tez can be much more

Dryad & Tez 82

Data Type Agnostic
n Tez is only concerned with the movement of data. Files

and streams of bytes.
n Does not impose any data format on the user application.

MapReduce application can use Key-Value pairs on top
of Tez. Hive and Pig can use tuple oriented formats that
are natural and native to them.

File

Stream

Key Value

Tez
Task

Tuples

User Code

Bytes Bytes

Dryad & Tez 83

Simplifying Deployment

Client
Machine

Node
Manager

TezTask

Node
Manager

TezTaskTezClient

HDFS
Tez Lib 1 Tez Lib 2

Client
Machine

TezClient

n Tez is a completely-client-side application.
n No servers to be deployed

n Simply upload to any accessible File System & change local Tez
configuration to point to that.

n Enable running different versions concurrently. Facilitate
testing of new functionality while keeping stable versions for
production.

n Leverages YARN local resources.

Dryad & Tez 84

Tez – Execution Performance

n Performance gains over Map Reduce
n Optimal resource management via YARN

Container-Reuse/Sharing
n Plan reconfiguration at runtime
n Dynamic physical data flow decisions

Dryad & Tez 85

Tez Execution Performance Gain vs. MapReduce
n Eliminate replicated write barrier between successive

computations.
n Eliminate job launch overhead of workflow jobs.
n Eliminate extra stage of map reads in every workflow job.
n Eliminate queue and resource contention suffered by

workflow jobs that are started after a predecessor job
completes.

Pig/Hive - MR
Pig/Hive - Tez

Dryad & Tez 86

Tez – Execution Performance
n Optimal resource management

n Reuse YARN containers/JVMs to launch new tasks
n Reduce scheduling and launching delays
n Enable Sharing of in-memory Data/Objects across tasks
n JVM JIT friendly execution

YARN Container

TezTask Host

TezTask
1

TezTask
2 Sh

ar
ed

 O
bj

ec
ts

YARN Container

Tez
Application Master

Start Task

Task Done

Start Task

Dryad & Tez 87

Tez Container reuse

n Tez specific feature
n Run an entire DAG using the same containers
n Different vertices use same container
n Saves time talking to YARN for new containers

Dryad & Tez 88

Tez – Execution Performance
n Plan reconfiguration at runtime

n Dynamic runtime concurrency control based on data size,
user operator resources, available cluster resources and
locality.

n Advanced changes in dataflow graph structure.
n Progressive graph construction in concert with user

optimizer.

HDFS
Blocks

YARN
Resources

Stage 1
50 maps

100
partitions

Stage 2
100

reducers

Stage 1
50 maps

100
partitions

Stage 2
100 10

reducers

Only 10GB’s
of data

Dryad & Tez 89

Tez – Execution Performance
n Dynamic physical data flow decisions

n Decide the type of physical byte movement and storage
on the fly.

n Store intermediate data on distributed store, local store or
in-memory.

n Transfer bytes via blocking files or streaming and the
spectrum in between.

Producer
(small size)

In-Memory

Consumer

Producer

Local File

Consumer

At Runtime

Dryad & Tez 90

Organization of the Tez Framework
Tez provides the following APIs to define the work
nDAG API

• Define the structure of the data processing and the
relationship between producers and consumers

• Enable definition of complex data flow pipelines using
simple graph connection API’s. Tez expands the logical
DAG at runtime

• This is how all the tasks in the job get specified
•Runtime API

• Define the interface using which the Framework and App
code interact with each other

• App code transforms data and moves it between tasks
• This is how one can specify what actually executes in

each task on the cluster nodes

Dryad & Tez 91

The DAG API of Tez

DAG dag = new DAG();
Vertex map1 = new Vertex(MapProcessor.class);

Vertex map2 = new Vertex(MapProcessor.class);
Vertex reduce1 = new Vertex(ReduceProcessor.class);
Vertex reduce2 = new Vertex(ReduceProcessor.class);
Vertex join1 = new Vertex(JoinProcessor.class);
…….

Edge edge1 = Edge(map1, reduce1,
SCATTER_GATHER, PERSISTED, SEQUENTIAL,
MOutput.class, RInput.class);

Edge edge2 = Edge(map2, reduce2, SCATTER_GATHER, PERSISTED,
SEQUENTIAL, MOutput.class, RInput.class);

Edge edge3 = Edge(reduce1, join1, SCATTER_GATHER, PERSISTED,
SEQUENTIAL, MOutput.class, RInput.class);

Edge edge4 = Edge(reduce2, join1, SCATTER_GATHER, PERSISTED,
SEQUENTIAL, MOutput.class, RInput.class);
…….

dag.addVertex(map1).addVertex(map2)
.addVertex(reduce1).addVertex(reduce2)
.addVertex(join1)
.addEdge(edge1).addEdge(edge2)
.addEdge(edge3).addEdge(edge4);

reduce1

map2

reduce2

join1

map1

Scatter_Gather
Bipartite
Sequential

Scatter_Gather
Bipartite
Sequential

Use the DAG API to define Global Processing Flow

Dryad & Tez 92

DAG API of Tez: Edge Properties

n Data movement – Define routing of data between tasks
n One-To-One : Data from the ith producer task routes to the ith

consumer task.
n Broadcast : Data from a producer task routes to all consumer

tasks.
n Scatter-Gather : Producer tasks scatter data into shards and

consumer tasks gather the data. The ith shard from all producer
tasks routes to the ith consumer task.

n Scheduling – Define when a consumer task is scheduled
n Sequential : Consumer task may be scheduled after a producer task

completes.
n Concurrent : Consumer task must be co-scheduled with a producer

task.
n Data source – Define the lifetime/reliability of a task output

n Persisted : O/P will be available after the task exits. Output may be
lost later on.

n Persisted-Reliable : O/P is reliably stored and will always be
available

n Ephemeral : O/P is available only while the producer task is running

Edge properties define the connection between producer
and consumer vertices in the DAG

One-to-One

Broadcast

Scatter-
Gather

Dryad & Tez 93

Logical DAG expansion at Runtime

reduce1

map2

reduce2

join1

map1

Dryad & Tez 94

Runtime API building blocks of Tez

Dryad & Tez 95

Tez – Sessions

Application Master

Client
Start
Session

Submit
DAG

Task Scheduler

Co
nt

ai
ne

r P
oo

l
Shared
Object

Registry

Pre
Warmed

JVM

Sessions
• Standard concepts of pre-launch

and pre-warm applied
• Key for Interactive queries
• Analogous to database sessions

and represent a connection
between the user and the cluster

• A session can run Multiple
DAGs/Queries executed in the
same AM

• Maintains a pool of reusable
containers for low latency
execution of tasks within and
across queries

• Take care of data locality and
releasing resources when idle

• Session cache in the Application
Master and in the container pool
reduce re-computation and re-
initialization

Dryad & Tez 96

Tez – Re-Use in Action (In Session)

Task Execution
Timeline

Dryad & Tez 97

Tez – Deep Dive

n DAG API
n Runtime API and Event Model
n Dynamic Graph Reconfiguration

Dryad & Tez 98

Tez – Deep Dive – Task Execution

Task Attempt
(real on machine)

Task Attempt
(logical in AM)

Env, cmd line,
resources

Tez Task JVM

Input
Processor

Output

Get Task

Start container

Input

Processor

OutputControl/Data
Information

Data Events
Control Events

• Start task shell with
user specified env,
resources etc.

• Fetch and
instantiate Input,
Processor, Output
objects

• Receive
(incremental) input
information and
process the input

• Provide output
information

• Provide
control/error events

Dryad & Tez 99

Tez Deep Dive – Runtime Events

Reduce Task 2

Input1 Input2

Map Task 2
Output1

Output2
Output3

Map Task 1
Output1

Output2
Output3

Error Event

AM
Router

Scatter-Gather Edge

• Events used to communicate
between the tasks and between
task and ApplicationMaster (AM)

• Data Movement Event used by
producer task to inform the
consumer task about data
location, size etc.

• Input Error event sent by task to
AM to inform about errors in
reading input. AM then takes
action by re-generating the input

• Other events to send task
completion notification, data
statistics and other control plane
information

Dryad & Tez 100

Tez Deep Dive – Runtime Events

Reduce Task 2

Input1 Input2

Map Task 2
Output1

Output2
Output3

Data Event

Map Task 1
Output1

Output2
Output3

Error Event

AM
Router

Scatter-Gather Edge

• Events used to communicate
between the tasks and between
task and ApplicationMaster (AM)

• Data Movement Event used by
producer task to inform the
consumer task about data
location, size etc.

• Input Error event sent by task to
AM to inform about errors in
reading input. AM then takes
action by re-generating the input

• Other events to send task
completion notification, data
statistics and other control plane
information

Dryad & Tez 101

Tez Deep Dive – Runtime Events

Reduce Task 2

Input1 Input2

Map Task 2
Output1

Output2
Output3

Data Event

Map Task 1
Output1

Output2
Output3

Error Event

AM
Router

Scatter-Gather Edge

• Events used to communicate
between the tasks and between
task and ApplicationMaster (AM)

• Data Movement Event used by
producer task to inform the
consumer task about data
location, size etc.

• Input Error event sent by task to
AM to inform about errors in
reading input. AM then takes
action by re-generating the input

• Other events to send task
completion notification, data
statistics and other control plane
information

Dryad & Tez 102

Tez – Deep Dive – Core Engine

reduce1

map1

Start
vertex

Vertex Manager

Start
tasks

DAG
Scheduler

Get Priority

Get Priority

Start
vertex

Task
Scheduler

Get container

Get container

• Vertex Manager
• Determine task

parallelism
• Determine when

tasks in a vertex
can start.

• DAG Scheduler
Determine priority of
task
• Task Scheduler
Allocate containers from
YARN and assigns them
to tasks

Dryad & Tez 103

Tez – Automatic Reduce Parallelism

Event Model
Map tasks send data
statistics events to
the Reduce Vertex
Manager.

Vertex Manager
Pluggable user logic
that understands the
data statistics and
can formulate the
correct parallelism.
Advise vertex
controller on
parallelism

Map Vertex

Reduce Vertex
App Master

Vertex Manager

Vertex State
Machine

Cancel Task

Dryad & Tez 104

Tez – Automatic Reduce Parallelism

Event Model
Map tasks send data
statistics events to
the Reduce Vertex
Manager.

Vertex Manager
Pluggable user logic
that understands the
data statistics and
can formulate the
correct parallelism.
Advise vertex
controller on
parallelism

Map Vertex

Reduce Vertex
App Master

Vertex Manager
Data Size Statistics

Vertex State
Machine

Cancel Task

Dryad & Tez 105

Tez – Automatic Reduce Parallelism

Event Model
Map tasks send data
statistics events to
the Reduce Vertex
Manager.

Vertex Manager
Pluggable user logic
that understands the
data statistics and
can formulate the
correct parallelism.
Advise vertex
controller on
parallelism

Map Vertex

Reduce Vertex
App Master

Vertex Manager
Data Size Statistics

Vertex State
Machine

Set Parallelism

Cancel Task

Re-Route

Dryad & Tez 106

Tez – Reduce Slow Start/Pre-launch

Event Model
Map completion
events sent to the
Reduce Vertex
Manager.

Vertex Manager
Pluggable user logic
that understands the
data size. Advise the
vertex controller to
launch the reducers
before all maps have
completed so that
shuffle can start.

Map Vertex

Reduce Vertex
App Master

Vertex Manager

Vertex State
Machine

Dryad & Tez 107

Tez – Reduce Slow Start/Pre-launch

Event Model
Map completion
events sent to the
Reduce Vertex
Manager.

Vertex Manager
Pluggable user logic
that understands the
data size. Advise the
vertex controller to
launch the reducers
before all maps have
completed so that
shuffle can start.

Map Vertex

Reduce Vertex
App Master

Vertex Manager
Task Completed

Vertex State
Machine

Dryad & Tez 108

Tez – Reduce Slow Start/Pre-launch

Event Model
Map completion
events sent to the
Reduce Vertex
Manager.

Vertex Manager
Pluggable user logic
that understands the
data size. Advise the
vertex controller to
launch the reducers
before all maps have
completed so that
shuffle can start.

Map Vertex

Reduce Vertex
App Master

Vertex Manager
Task Completed

Vertex State
Machine

Start Tasks

Start

Dryad & Tez 109

Tez – Automatic Map Parallelism

• Input vertex
manager gets block
locations and
estimates the
number of mappers
based on data size,
cluster capacity and
map data limits.
Groups block by
locality

• Consumer vertex
parallelism gets
recursively
determined through
the chain of
consumer vertices

Map Vertex

1-1 Edges

1-1 Edges

Dryad & Tez 110

Tez – Automatic Map Parallelism

• Input vertex
manager gets block
locations and
estimates the
number of mappers
based on data size,
cluster capacity and
map data limits.
Groups block by
locality

• Consumer vertex
parallelism gets
recursively
determined through
the chain of
consumer vertices

Map Vertex
Set
Parallelism

HDFS

Get
Block
Locations 1-1 Edges

1-1 Edges

Dryad & Tez 111

Tez – Automatic Map Parallelism

• Input vertex
manager gets block
locations and
estimates the
number of mappers
based on data size,
cluster capacity and
map data limits.
Groups block by
locality

• Consumer vertex
parallelism gets
recursively
determined through
the chain of
consumer vertices

Map VertexSet
Parallelism

HDFS

Get
Block
Locations

Dryad & Tez 112

End User Benefits from Tez
• Better Performance

• Framework performance + application performance
• Better utilization of cluster resources

• Efficient use of allocated resources
• Better predictability of results

• Minimized queuing delays
• Reduced load on HDFS

• Removes unnecessary HDFS writes
• Reduced network usage

• Efficient data transfer using new data patterns
• Increased developer productivity

• Lets the user concentrate on application logic instead
of Hadoop internals

Dryad & Tez 113

Tez – Broadcast Edge

SELECT ss.ss_item_sk, avg_price, inv.inv_quantity_on_hand
FROM (select avg(ss_sales_price) as avg_price, ss_item_sk from

store_sales
group by ss_item_sk) ss

JOIN inventory inv

ON (inv.inv_item_sk = ss.ss_item_sk);

M M M

HDFS

Store Sales scan.
Group by and
aggregation.

Inventory and Store
Sales (aggr.) output
scan and shuffle
join.

R R

R R

MMM

HDFS

M M M

HDFS

Store Sales scan.
Group by and
aggregation.

Inventory and Store
Sales (aggr.) output
scan and shuffle
join.

R R

MMM

broadcast

Dryad & Tez 114

Tez – Multiple Outputs
FROM (SELECT * FROM store_sales, date_dim WHERE ss_sold_date_sk =

d_date_sk and d_year = 2000)

INSERT INTO TABLE t1 SELECT distinct ss_item_sk

INSERT INTO TABLE t2 SELECT distinct ss_customer_sk;

Hive : Multi-insert queries
Hive – MR Hive – Tez

M MM

M

HDFS

Map join
date_dim/store
sales

Two MR jobs to
do the distinct

M MM

M M

HDFS

RR

HDFS

M M M

R

M M M

R

HDFS

Broadcast Join
(scan date_dim,
join store sales)

Distinct for
customer + items

Materialize join on
HDFS

Dryad & Tez 115

Recap: Tez – Data at scale

Hive TPC-DS
Scale 10TB

Dryad & Tez 116

Tez – what if you can’t get enough containers?

n 78 vertex + 8374 tasks on 50 YARN containers

Dryad & Tez 117

Tez – Designed for big, busy clusters

n Number of stages in the DAG
n Higher the number of stages in the DAG, performance of Tez (over

MR) will be better.
n Cluster/queue capacity

n More congested a queue is, the performance of Tez (over MR) will be
better due to container reuse.

n Size of intermediate output
n Larger the size of intermediate output, the performance of Tez (over

MR) will be better due to reduced HDFS usage (cross-rack traffic)
n Size of data in the job

n For smaller data and more stages, the performance of Tez (over MR)
will be better as percentage of launch overhead in the total time is
high for smaller jobs.

n Move workloads from gateway boxes to the cluster
n Move as much work as possible to the cluster by modelling it via the

job DAG. Exploit the parallelism and resources of the cluster.

Dryad & Tez 118

Tez – Bridge the Data Spectrum

Fact Table Dimension
Table 1

Result
Table 1

Dimension
Table 2

Result
Table 2

Dimension
Table 3

Result
Table 3

Broadcast
Join

Shuffle
Join

Typical pattern in a
TPC-DS query

Fact Table
Dimension

Table 1

Dimension
Table 3

Dimension
Table 2

Broadcast join
for small data sets

Based on data size,
the query optimizer
can run either plan
as a single Tez job

Broadcast
Join

Dryad & Tez 119

Tez – Benchmark Performance

Significant (but not all) speedups due to Tez
• DAG support and runtime graph

reconfiguration enable utilizing the
parallelism of the cluster

• Tez Session and container reuse enable efficient
and low latency execution

Dryad & Tez 120

Tez – Performance Analysis

Architecting the Future of Big Data

Tez Session populates
container pool

Dimension table
calculation and HDFS
split generation in
parallel

Dimension tables
broadcasted to Hive
MapJoin tasks

Final Reducer pre-
launched and fetches
completed inputs

TPCDS – Query-27 with Hive on Tez

Dryad & Tez 121

Tez – Roadmap

n Richer DAG support
n Support for co-scheduling and streaming
n Better fault tolerance with checkpoints

n Performance optimizations
n More efficiencies in transfer of data
n Improve session performance

n Usability.
n Stability and testability
n Recovery and history
n Tools for performance analysis and debugging

Dryad & Tez 122

Tez – Adoption
n Hive

n Hadoop standard for declarative access via SQL-like
interface

n Pig
n Hadoop standard for procedural scripting and pipeline

processing
n Cascading

n Developer friendly Java API and SDK
n Scalding (Scala API on Cascading)

n Commercial Vendors
n ETL : Use Tez instead of MR or custom pipelines
n Analytics Vendors : Use Tez as a target platform for

scaling parallel analytical tools to large data-sets

Dryad & Tez 123

Tez – Community
n Technical blog series

n http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-
processing

n Apache Wiki https://cwiki.apache.org/confluence/display/TEZ/Index

n Tez meetup for developers and users
n http://www.meetup.com/Apache-Tez-User-Group

n Hive and Pig communities are on-board and
making great progress -
n HIVE-4660 and PIG-3446

n Useful links
n Work tracking: https://issues.apache.org/jira/browse/TEZ
n Code: https://github.com/apache/tez
n Developer list: dev@tez.apache.org

User list: user@tez.apache.org
Issues list: issues@tez.apache.org

http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://www.meetup.com/Apache-Tez-User-Group
https://issues.apache.org/jira/browse/TEZ
https://github.com/apache/tez
mailto:dev@tez.incubator.apache.org
mailto:user@tez.incubator.apache.org
mailto:issues@tez.incubator.apache.org

Dryad & Tez 124

Tez Summary
n Distributed execution framework that works on computations

represented as dataflow graphs
n Naturally maps to execution plans produced by query

optimizers
n Customizable execution architecture designed to enable

dynamic performance optimizations at runtime
n Span the spectrum of interactive latency to batch
n It is already being used by Hive and Pig

Dataflow systems

Dryad & Tez 126

Why dataflow systems have been so
popular upto now?

n Collection-oriented programming model
n Operations on collections of objects
n Turn spurious (unordered) for into foreach
n Not every for is foreach

n Aggregation (sum, count, max, etc.)
n Grouping
n Join, Zip

n Iteration
n LINQ since ca 2008, now Spark via Scala, Java

Dryad & Tez 127

int SortKey(KeyValuePair<string,int> x)
{

return x.count;
}

int SortKey(void* x)
{

return (KeyValuePair<string,int>*)x->count;
}

Given some lines of text,
find the most commonly
occurring words.

1. Read the lines from a file
2. Split each line into its constituent words
3. Count how many times each word appears
4. Find the words with the highest counts

1. var lines = FS.ReadAsLines(inputFileName);
2. var words = lines.SelectMany(x => x.Split(‘ ‘));
3. var counts = words.CountInGroups();
4. var highest =

counts.OrderByDescending(x => x.count).Take(10);

Type inference

Collection<KeyValuePair<string,int>>

Lambda
expressions

Generics and extension
methods

FooCollection FooTake(FooCollection c, int count) { … }

Well-chosen syntactic sugar

red,2
blue,4

yellow,3

red

red

blue

blueblue blue
yellow

yellow
yellow

Collection<T> Take(this Collection<T> c, int count) { … }

Dryad & Tez 128

Collections compile to dataflow
n Each operator specifies a single data-parallel step
n Communication between steps explicit

n Collections reference collections, not individual objects!
n Communication under control of the system

n Partition, pipeline, exchange automatically

n LINQ innovation: embedded user-defined functions
var words = lines.SelectMany(x => x.Split(‘ ‘));

n Very expressive
n Programmer ‘naturally’ writes pure functions

Dryad & Tez 129

Quiet revolution in parallelism
n Programming model is more attractive

n Simpler, more concise, readable, maintainable
n Program is easier to optimize

n Programmer separates computation and communication
n System can re-order, distribute, batch, etc. etc.

Dryad & Tez 130

Stateless DAG dataflow
n MapReduce, Dryad, Spark, …
n Stateless vertex constraint hampers performance

n Iteration and streaming overheads
n Why does this design keep repeating?

n An Engineering Sweet Spot !

Dryad & Tez 131

Software engineering
n Fault tolerance well understood

n E.g., Chandy-Lamport, rollback recovery, etc.
n Basic mechanism: checkpoint plus log
n Stateless DAG: no checkpoint!
n Programming model “tricked” user

n All communication on typed channels
n Only channel data needs to be persisted
n Fault tolerance comes without programmer effort
n Even with UDFs

Dryad & Tez 132

Beyond Stateless DAG Dataflow

Dryad & Tez 133

Batch
processing

Stream
processing

Graph
processing

Timely dataflow

Dryad & Tez 134

Batching Streamingvs.

û Requires coordination
ü Supports aggregation

ü No coordination needed
û Aggregation is difficult

(synchronous) (asynchronous)

Dryad & Tez 135

Mutable state
n In batch DAG systems collections are immutable

n Functional definition in terms of preceding subgraph
n Adding streaming or iteration introduces mutability

n Collection varies as function of epoch, loop iteration

Dryad & Tez 136

What about stateful dataflow?
n Microsoft Naiad

n Add state to vertices
n Support streaming and iteration

n Opportunities
n Much lower latency
n Can model mutable state with dataflow

n Challenges
n Scheduling
n Coordination
n Fault tolerance

Dryad & Tez 137

What can’t dataflow do?
n Programming model for mutable state?

n Not as intuitive as functional collection manipulation
n Policies for placement still primitive

n Hash everything and hope
n Great research opportunities

n Intersection of OS, network, runtime, language

Dryad & Tez 138

Conclusions
n Dataflow is a great structuring principle

n We know good programming models
n We know how to write high-performance systems

n Dataflow is the status quo for batch processing
n Mutable state (i.e. Stateful Dataflow Systems

supporting incremental recovery) are the current
(circa 2015) research frontier

